Courses: GEO-SD304 System Dynamics Modelling Process - Spring 2020




Level of Study

Master

Language of Instruction

English

Teaching semester

Autumn

 

Objectives and Content

In this course, students apply the System Dynamics method to problems in both the public and private sectors. Students will apply and gain reinforcement of skills learned in other system dynamics courses as they follow a structured process for modelling and simulation of dynamic problems in both social and natural systems. Emphasis is on the design of simulation models to explain problem behaviour in dynamic systems, and on the re-design of such models to represent the implementation of policies aimed at improving their behaviour. Students learn to use the system dynamics modelling process: define the dynamics of problems, develop hypotheses regarding the structure underlying problem behaviour, analyse and validate computer simulation models, and design policies to improve systemic behaviour. In addition to learning from the lectures and materials, students gain hands-on experience through in-class tasks, assignments, and an in-depth project. The reading list includes a primary textbook and supplemental material.

Learning Outcomes

Express knowledge and understanding

Students should be able to describe and explain in detail the system dynamics modelling process, with particular emphasis on defining the dynamics of a problem; formulating hypotheses regarding the structure underlying dynamic problem behaviour; analysing a model to improve its reliability and usefulness; analysing a model's structure to understand the origin of its dynamic behaviour; testing a model¿s sensitivity to parameter assumptions; testing changes in a policy parameter; designing and testing new policy structure; and planning for policy implementation. The students should through this work deepen their understanding of the structural causes of dynamic behaviour and hone their skills with system dynamics software tools.

Apply knowledge and understanding

Students should be able to (1) define the dynamics of a problem; (2) formulate hypotheses (in words, diagrams, and a set of model equations) as tentative explanations of problematic dynamic behaviour; (3) analyse a model's structure to discover the endogenous source of particular dynamic patterns; (4) analyse and test a model to improve its reliability and usefulness; (5) test a model's sensitivity to parameter assumptions; (6) identify and evaluate potential leverage points for improving model behaviour through policy parameter analysis; (7) conduct policy design and evaluation with modifications in the structure of an explanatory model; (8) identify obstacles to policy implementation and include feasibility criteria in policy design; (9) develop and analyze a simulation model that provides a useful explanation of a given problematic behaviour in a narrowly-defined task; and (10) identify a real-world dynamic problem and conduct a 6-week empirical and theoretical investigation, culminating in an explanatory model, a policy model, a written report, and an oral presentation.

Make judgements

Students be able to (1) adopt a client's perspective to assess the definition of a problem, the boundary of a model, and the model¿s reliability and usefulness; (2) establish and evaluate criteria for evaluating how well a model structure contributes to the explanation of an observed or hypothesised dynamic behaviour; (3) assess data requirements in light of a model¿s sensitivity to parameter estimates; (4) determine whether simulated policy options are feasible in the real world; (5) evaluate policy implementation obstacles and modify expected benefits accordingly; and (6) take ethical considerations into account when conducting research and developing models, and when interacting with clients, stakeholders, and colleagues.

Communicate

Students should be able to (1) organize a written discussion of a modelling project in a way that highlights the research problem or question, the hypothesis, the method of analyzing and testing the hypothesis, and the policy implications of the investigation; (2) make oral presentations of their work; (3) design and present model diagrams in a way that facilitates communication and understanding; and (4) translate technical information into language that clients understand. In addition, students should gain additional confidence in their communication skills through extensive discussion and debate in classroom settings.

Develop learning skills

Students should be able to (1) conduct research and engage in projects with a high degree of independence, responsibility, and reliability; (2) access and interpret relevant scientific and policy literature; and (3) write and speak effectively about their work and relevant issues.

Required Previous Knowledge

Recommended Previous Knowledge

GEO-SD302 and GEO-SD303, or other adequate background in modelling

 

 

Access to the Course

The course is open to students enrolled in the Erasmus Mundus master program and to graduate and undergraduate students at the University of Bergen.

Teaching and learning methods

The course consists of lectures and computer lab activities, short in-class tasks, written assignments, and a major project requiring a written report, a model, and a presentation.

Compulsory Assignments and Attendance

Forms of Assessment

Assessment consists of evaluating a modeling project. The modeling project consists of a simulation model (70% of the final grade), an oral presentation in the form of a video clip and response to examiners' questions (30% of the final grade).

Grading Scale

An ECTS grade is provided to the student at the end of the course according to the A-F scale.

Assessment Semester

Autumn

Course Evaluation

GEO-SD304 will be evaluated at least every third year

Contact Information

Department of Geography

studieveileder@geog.uib.no

http://www.uib.no/rg/dynamics